Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
1.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627785

RESUMO

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Assuntos
Neoplasias Mamárias Animais , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Dano ao DNA , Reparo do DNA , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
2.
Vet Med Sci ; 10(3): e1366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527110

RESUMO

BACKGROUND: DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES: In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS: We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS: We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS: The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.


Assuntos
Doenças do Cão , Proteína do Grupo de Complementação N da Anemia de Fanconi , Neoplasias Mamárias Animais , Animais , Cães , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/veterinária , Neoplasias da Mama/patologia , Carcinogênese , Doenças do Cão/genética , Doenças do Cão/patologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/química , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Mutação , Proteínas Supressoras de Tumor/genética
3.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442201

RESUMO

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fator 1 de Elongação de Peptídeos , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
4.
Theriogenology ; 217: 127-135, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271766

RESUMO

Cytokeratin 19 (CK19) is a complex intracytoplasmic cytoskeletal protein primarily localized in the ducts of the mammary gland and skin epithelial cells. In humans, the expression of CK19 gene within circulating tumor cells (CTCs) extracted from blood samples of breast cancer patients reflects tumor cell activity, offering valuable insights for predicting early metastatic relapse or monitoring treatment effectiveness. However, knowledge of serum tumor markers is limited in veterinary oncology. Recently, droplet digital PCR (ddPCR), has been employed to explore rare target genes due to its heightened sensitivity and accuracy as a novel molecular diagnostic tool. The objectives of this study were to investigate the expression of the CK19 mRNA in CTCs, non-neoplastic mammary tissues, and both benign and malignant canine mammary tumors (CMTs) through ddPCR analysis. In Study I, we optimized the discard volume for blood samples to reduce CK19 contamination from skin epithelial cells post-venipuncture. The results revealed that discarding the initial 3 mL of blood was adequate and effective in eliminating CK19 mRNA contamination. In Study II, after the removal of the initial 3 mL of blood, we investigated CK19 mRNA-positive CTCs in the peripheral blood of normal healthy dogs, including those with benign and malignant CMTs. Intriguingly, CK19 mRNA was undetectable in all blood samples. The expression of CK19 mRNA in mammary tissues was investigated in Study III. The copy number (CN) ratios of the CK19 gene in non-neoplastic mammary tissues (14.77 ± 14.65) were significantly higher (P < 0.05) than those in benign (4.23 ± 3.35) and malignant groups (6.56 ± 5.64). Notably, no difference was observed between the benign and malignant groups. In conclusion, CK19 mRNA appeared unlikely to be a suitable candidate as a biomarker in the peripheral blood of CMTs, while the CN ratio in mammary tissues could serve as a potential discriminator between non-neoplastic and CMT groups, complementing the gold standard of histopathological examination.


Assuntos
Neoplasias da Mama , Doenças do Cão , Neoplasias Mamárias Animais , Humanos , Cães , Animais , Feminino , Queratina-19/genética , Queratina-19/metabolismo , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/veterinária , Reação em Cadeia da Polimerase/veterinária , Biomarcadores Tumorais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/metabolismo
5.
Sci Rep ; 14(1): 848, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191908

RESUMO

Despite its demonstrated biological significance, time of day is a broadly overlooked biological variable in preclinical and clinical studies. How time of day affects the influence of peripheral tumors on central (brain) function remains unspecified. Thus, we tested the hypothesis that peripheral mammary cancer tumors alter the transcriptome of immune responses in the brain and that these responses vary based on time of day; we predicted that time of day sampling bias would alter the interpretation of the results. Brain tissues collected at mid dark and mid light from mammary tumor-bearing and vehicle injected mice were analyzed using the Nanostring nCounter immune panel. Peripheral mammary tumors significantly affected expression within the brain of over 100 unique genes of the 770 represented in the panel, and fewer than 25% of these genes were affected similarly across the day. Indeed, between 65 and 75% of GO biological processes represented by the differentially expressed genes were dependent upon time of day of sampling. The implications of time-of-day sampling bias in interpretation of research studies cannot be understated. We encourage considering time of day as a significant biological variable in studies and to appropriately control for it and clearly report time of day in findings.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Viés , Viés de Seleção , Neoplasias Mamárias Animais/genética , Encéfalo , Transcriptoma
6.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256245

RESUMO

Gene expression has been suggested as a putative tool for prognosis and diagnosis in canine mammary neoplasia (CMNs). In the present study, 58 formalin-fixed paraffin-embedded (FFPE) paraffined canine mammary neoplasias from 27 different bitches were included. Thirty-seven tumours were classified as benign, whereas thirty-one were classified as different types of canine carcinoma. In addition, mammary samples from three healthy bitches were also included. The gene expression for vascular endothelial growth factor-α (VEGFα), CD20, progesterone receptor (PGR), hyaluronidase-1 (HYAL-1), programmed death-ligand 1 (PD-L1), epidermal growth factor (EGF), relaxin (RLN2), and matrix metalloproteinase-3 (MMP3) was assessed through RT-qPCR. All the assessed genes yielded a higher expression in neoplastic mammary tissue than in healthy tissue. All the evaluated genes were overexpressed in neoplastic mammary tissue, suggesting a role in the process of tumorigenesis. Moreover, PD-L1, EGF, relaxin, and MMP3 were significantly overexpressed in malignant CMNs compared to benign CMNs, suggesting they may be useful as malignancy biomarkers.


Assuntos
Neoplasias Mamárias Animais , Relaxina , Animais , Cães , Fator de Crescimento Epidérmico/genética , Relaxina/genética , Metaloproteinase 3 da Matriz/genética , Antígeno B7-H1 , Ligantes , Fator A de Crescimento do Endotélio Vascular , Neoplasias Mamárias Animais/genética , Biomarcadores
7.
Biochem Biophys Res Commun ; 691: 149336, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039834

RESUMO

Mammary gland tumors (MGT) are the most common tumors in sexually intact female dogs. The functional regulation of miRNAs, a type of noncoding RNAs (ncRNAs), in canine MGT has been extensively investigated. However, the expression of other ncRNAs, such as YRNAs and transfer RNA-derived fragments (tRFs) in canine MGT is unknown. We investigated ncRNAs other than miRNAs from our small RNA project (PRJNA716131) in different canine MGT histologic subtypes. This study included benign tumors (benign mixed tumor, complex adenoma) and malignant tumors (carcinoma in benign tumor and carcinoma with metastasis) samples. Aberrantly expressed ncRNAs were examined by comparisons among MGT subtypes. The relative expression trends were validated in canine MGT tissues, plasma, extracellular vesicles, and MGT cell lines using quantitative reverse transcription PCR. Three aberrantly expressed ncRNAs were identified by comparisons among MGT subtypes. YRNA and tRNA-Gly-GCC distinguished benign mixed tumor from other MGT histologic subtypes, while tRNA-Val differentiated complex adenoma, carcinoma in benign tumors, and carcinoma with metastasis. The ROC curve of the three ncRNAs showed they might be potential biomarkers to discriminate malignant from benign MGT. YRNA and tRFs expression levels were decreased in metastatic compared with primary canine MGT cell lines. To the best of our knowledge, this is the first investigation of YRNA and tRFs in canine MGT. The three identified ncRNAs may be biomarkers for differentiating MGT histologic subtypes. Suggested Reviewers: Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporatio.


Assuntos
Adenoma , Carcinoma , Neoplasias Mamárias Animais , MicroRNAs , Cães , Animais , Feminino , Biomarcadores , Carcinoma/metabolismo , RNA de Transferência/genética , Adenoma/diagnóstico , Adenoma/genética , Adenoma/veterinária , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo
8.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149669

RESUMO

LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/genética , Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos Knockout
9.
Mol Biol Rep ; 50(12): 10617-10625, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943402

RESUMO

PURPOSE: Mammary gland tumors are the most common neoplastic diseases in elderly female dogs, about 50% of which are considered to be malignant. Canine mammary tumors are similar to human breast cancers in many respects, so canine mammary tumors are frequently studied alongside human breast cancer. This article mentioned KI-67, HER-2, COX-2, BRCA1, BRCA2, P53, CA15-3, MicroRNA, Top2α and so on. All these markers are expected to have an important role in the clinic. METHODS: Existing markers of canine mammary carcinoma are reviewed, and the expression of each marker and its diagnostic role for this tumor are described in detail. RESULTS: This article introduced several effective markers of canine mammary tumors, among them, antigen KI-67 (KI-67), human epidermal growth factor receptor 2 (HER-2), cyclooxygenase 2 (COX-2) are promising and can be detected in both serum and tissue samples. Breast cancer caused by mutations in the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) is also a hot topic of research. In addition to the above symbols, tumor protein p53 (p53), cancer antigen15-3 (CA15-3), MicroRNA (miRNA), topoisomerase πα (Top2α), proliferating cell nuclear antigen (PCNA), epidermal growth factor receptor (EGFR) and E-cadherin will also be involved in this paper. We will also mention Mammaglobin, which has been rarely reported so far.


Assuntos
Neoplasias da Mama , Carcinoma , Doenças do Cão , Neoplasias Mamárias Animais , MicroRNAs , Humanos , Animais , Cães , Feminino , Idoso , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Carcinoma/genética , Neoplasias da Mama/genética , MicroRNAs/genética , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/metabolismo , Regulação Neoplásica da Expressão Gênica
10.
Dis Model Mech ; 16(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815460

RESUMO

Basal-like breast cancer (BLBC) is highly aggressive, and often characterized by BRCA1 and p53 deficiency. Although conventional mouse models enabled the investigation of BLBC at malignant stages, its initiation and pre-malignant progression remain understudied. Here, we leveraged a mouse genetic system known as mosaic analysis with double markers (MADM) to study BLBC initiation by generating rare GFP+Brca1, p53-deficient mammary cells alongside RFP+ wild-type sibling cells. After confirming the close resemblance of mammary tumors arising in this model to human BLBC at both transcriptomic and genomic levels, we focused our studies on the pre-malignant progression of BLBC. Initiated GFP+ mutant cells showed a stepwise pre-malignant progression trajectory from focal expansion to hyper-alveolarization and then to micro-invasion. Furthermore, despite morphological similarities to alveoli, hyper-alveolarized structures actually originate from ductal cells based on twin-spot analysis of GFP-RFP sibling cells. Finally, luminal-to-basal transition occurred exclusively in cells that have progressed to micro-invasive lesions. Our MADM model provides excellent spatiotemporal resolution to illuminate the pre-malignant progression of BLBC, and should enable future studies on early detection and prevention for this cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Supressora de Tumor p53/genética , Neoplasias Mamárias Animais/genética , Mama/patologia
11.
Breast Cancer Res ; 25(1): 114, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789381

RESUMO

BACKGROUND: About 20% of breast cancers in humans are basal-like, a subtype that is often triple-negative and difficult to treat. An effective translational model for basal-like breast cancer is currently lacking and urgently needed. To determine whether spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. METHODS: We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We identified feature genes for human BLBC and luminal A subtypes via machine learning and used these genes to repeat canine-alone and cross-species tumor classifications. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. RESULTS: Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 and feature gene classifications, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched in histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors and with the expression of T cell exhaustion markers (e.g., PDCD1) in ER-PR+ canine tumors. CONCLUSIONS: We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall and thus could serve as a vital translational model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Cães , Animais , Feminino , Neoplasias da Mama/patologia , Biomarcadores Tumorais/genética , Receptor ErbB-2/metabolismo , Neoplasias Mamárias Animais/genética , Receptores de Progesterona/metabolismo
12.
Gene ; 877: 147548, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279863

RESUMO

GPER is a seven transmembrane G-protein-coupled estrogen receptor that mediates rapid estrogen actions. Large volumes of data have revealed its association with clinicopathological variables in breast tumors, role in epidermal growth factor (EGF)-like effects of estrogen, potential as a therapeutic target or a prognostic marker, and involvement in endocrine resistance in the face of tamoxifen agonism. GPER cross-talks with estrogen receptor alpha (ERα) in cell culture models implicating its role in the physiology of normal or transformed mammary epithelial cells. However, discrepancies in the literature have obfuscated the nature of their relationship, its significance, and the underlying mechanism. The purpose of this study was to assess the relationship between GPER, and ERα in breast tumors, to understand the mechanistic basis, and to gauge its clinical significance. We mined The Cancer Genome Atlas (TCGA)-BRCA data to examine the relationship between GPER and ERα expression. GPER mRNA, and protein expression were analyzed in ERα-positive or -negative breast tumors from two independent cohorts using immunohistochemistry, western blotting, or RT-qPCR. The Kaplan-Meier Plotter (KM) was employed for survival analysis. The influence of estrogen in vivo was studied by examining GPER expression levels in estrus or diestrus mouse mammary tissues, and the impact of 17ß-estradiol (E2) administration in juvenile or adult mice. The effect of E2, or propylpyrazoletriol (PPT, an ERα agonist) stimulation on GPER expression was studied in MCF-7 and T47D cells, with or without tamoxifen or ERα knockdown. ERα-binding to the GPER locus was explored by analysing ChIP-seq data (ERP000380), in silico prediction of estrogen response elements, and chromatin immunoprecipitation (ChIP) assay. Clinical data revealed significant positive association between GPER and ERα expression in breast tumors. The median GPER expression in ERα-positive tumors was significantly higher than ERα-negative tumors. High GPER expression was significantly associated with longer overall survival (OS) of patients with ERα-positive tumors. In vivo experiments showed a positive effect of E2 on GPER expression. E2 induced GPER expression in MCF-7 and T47D cells; an effect mimicked by PPT. Tamoxifen or ERα-knockdown blocked the induction of GPER. Estrogen-mediated induction was associated with increased ERα occupancy in the upstream region of GPER. Furthermore, treatment with 17ß-estradiol or PPT significantly reduced the IC50 of the GPER agonist (G1)-mediated loss of MCF-7 or T47D cell viability. In conclusion, GPER is positively associated with ERα in breast tumors, and induced by estrogen-ERα signalling axis. Estrogen-mediated induction of GPER makes the cells more responsive to GPER ligands. More in-depth studies are warranted to establish the significance of GPER-ERα co-expression, and their interplay in breast tumor development, progression, and treatment.


Assuntos
Receptor alfa de Estrogênio , Neoplasias Mamárias Animais , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação ao GTP/genética , Neoplasias Mamárias Animais/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
13.
J Mammary Gland Biol Neoplasia ; 28(1): 14, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391533

RESUMO

Cancer-associated stroma (CAS) is widely recognized to influence development and progression of epithelial tumours including breast cancer. Canine mammary tumours (CMTs) such as simple canine mammary carcinomas represent valuable models for human breast cancer also with respect to stromal reprogramming. However, it remains unclear whether and how CAS changes in metastatic tumours compared to non-metastatic ones. To characterize stromal changes between metastatic and non-metastatic CMTs and identify potential drivers of tumour progression, we analysed CAS and matched normal stroma from 16 non-metastatic and 15 metastatic CMTs by RNA-sequencing of microdissected FFPE tissue. We identified 1438 differentially regulated genes between CAS and normal stroma, supporting previous results demonstrating stromal reprogramming in CMTs to be comparable with CAS in human breast cancer and validating deregulation of pathways and genes associated with CAS. Using primary human fibroblasts activated by treatment with TGFß, we demonstrate some of the strongest expression changes to be conserved in fibroblasts across species. Furthermore, we identify 132 differentially expressed genes between CAS from metastatic and non-metastatic tumours, with strong changes in pathways including chemotaxis, regulation of apoptosis, immune response and TGFß signalling and validate deregulation of several targets using RT-qPCR. Finally, we identify specific upregulation of COL6A5, F5, GALNT3, CIT and MMP11 in metastatic CAS, suggesting high stromal expression of these targets to be linked to malignancy and metastasis of CMTs. In summary, our data present a resource supporting further research into stromal changes of the mammary gland in relation to metastasis with implications for both canine and human mammary cancer.


Assuntos
Carcinoma , Neoplasias Mamárias Animais , Humanos , Animais , Cães , Neoplasias Mamárias Animais/genética , Apoptose , Fibroblastos , Fator de Crescimento Transformador beta
14.
PLoS One ; 18(6): e0286814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352273

RESUMO

Retroelements (REs) had been considered 'Junk' until the encyclopedia of DNA elements (ENCODE) project demonstrated that most genome is functional. Although the function of retroelements has been reported in diverse cancers including human breast cancer (HBC) and subtypes, only a few studies have suggested the putative functions of REs via their random genome integration. A canine mammary tumor (CMT) has been highlighted due to the similarities in molecular and pathophysiology with HBC. This study investigated the putative roles of REs common in both HBC and CMT. The human LINE and HERV-K sequences harbor many miRNAs responsive elements (MREs) for tumor-suppressive miRNA such as let-7. We also observed that various MREs are exist in the ERV and LINE highly expressed in the transcriptome data of CMT as well as HBC sets. MREs against miR-126 were highly expressed in both HBC and CMT while the levels of miR-126 were down-regulated. Oppositely, the expression of miR-126 target genes was significantly up-regulated in the cancers. Moreover, cancer patients with an increased level of miR-126 showed better overall survival. The expression of ENPP5, a putative miR-126 target gene, was downregulated by miR-126 mimic. Importantly, overexpression of LINE fragment significantly suppressed miR-126 function on the target gene expression. We propose the functional role of REs expression in tumorigenesis as competing endogenous RNAs (ceRNA) against tumor-suppressive miRNAs. This study provided pieces of evidence that LINE expression, even partial and fragmented, have a regulatory function in ENPP5 gene expression via the competition with miR-126.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , MicroRNAs , Retroelementos , Animais , Cães , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/genética , MicroRNAs/genética , Retroelementos/genética , Transcriptoma
15.
Breast Cancer Res ; 25(1): 74, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349798

RESUMO

BACKGROUND: RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS: We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS: Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION: RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.


Assuntos
Neoplasias Pulmonares , Neoplasias Mamárias Animais , Animais , Espécies Reativas de Oxigênio , Neoplasias Mamárias Animais/genética , Neoplasias Pulmonares/patologia , RNA Interferente Pequeno , Dano ao DNA
16.
Clin Epigenetics ; 15(1): 68, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101222

RESUMO

BACKGROUND: Disadvantaged socioeconomic position (SEP), including lower educational attainment and household income, may influence cancer risk and outcomes. We hypothesized that DNA methylation could function as an intermediary epigenetic mechanism that internalizes and reflects the biological impact of SEP. METHODS: Based on tumor DNA methylation data from the Illumina 450 K array from 694 breast cancer patients in the Women's Circle of Health Study, we conducted an epigenome-wide analysis in relation to educational attainment and household income. Functional impact of the identified CpG sites was explored in silico using data from publicly available databases. RESULTS: We identified 25 CpG sites associated with household income at an array-wide significance level, but none with educational attainment. Two of the top CpG sites, cg00452016 and cg01667837, were in promoter regions of NNT and GPR37, respectively, with multiple epigenetic regulatory features identified in each region. NNT is involved in ß-adrenergic stress signaling and inflammatory responses, whereas GPR37 is involved in neurological and immune responses. For both loci, gene expression was inversely correlated to the levels of DNA methylation. The associations were consistent between Black and White women and did not differ by tumor estrogen receptor (ER) status. CONCLUSIONS: In a large breast cancer patient population, we discovered evidence of the significant biological impact of household income on the tumor DNA methylome, including genes in the ß-adrenergic stress and immune response pathways. Our findings support biological effects of socioeconomic status on tumor tissues, which might be relevant to cancer development and progression.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Animais , Metilação de DNA , Epigenoma , Neoplasias da Mama/metabolismo , Estudo de Associação Genômica Ampla , Epigênese Genética , Neoplasias Mamárias Animais/genética , Escolaridade , Ilhas de CpG
17.
Nature ; 617(7959): 139-146, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076617

RESUMO

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kß isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kß activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kß led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kß inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kß inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kß controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kß inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.


Assuntos
Evasão da Resposta Imune , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinase , Animais , Camundongos , Imunoterapia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia
18.
Cancer Gene Ther ; 30(7): 932-935, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37085602

RESUMO

Tumor heterogeneity affects diagnosis, prognosis and response to therapy. Heterogeneity is found in both normal and neoplastic human mammary gland. Indeed, luminal ER-negative cells can give rise to various phenotypes, including ER-negative and ER-positive mammary tumors. As a result, the tumor phenotype does not necessarily reflects the cell of origin of cancer. With regard to the ER status, heterogeneity can challenge endocrine therapies, where the elimination of responsive clones could lead to reduced treatment efficacy and tumor relapse through the expansion of the resistant clones. The aim of this study was to investigate breast tumor heterogeneity and its role in endocrine resistance onset. For this purpose, we used ER+ (T47D, CAMA1) and triple-negative breast cancer cell lines (TNBC; MDA-MB-231, HCC70), co-cultures using 2D and 3D models. Our results showed that ER status is modulated when ER+ cells are cultured in the presence of TNBC cells, leading to a different response to endocrine therapy, demonstrating that the response to treatment can be affected by the influence that different breast cancer cell types exert on each other. In addition, ER+ positive cells doubling time was modified after exposure to TNBC cell co-culturing. Further experiments are required to fully elucidate the molecular mechanism of these observations.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias Mamárias Animais/genética , Regulação Neoplásica da Expressão Gênica
19.
Cancer Sci ; 114(6): 2277-2292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36786527

RESUMO

The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Mamárias Animais/genética , Complexo Mediador/genética , Complexo Mediador/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
20.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835085

RESUMO

Epigenetic mechanisms such as microRNA (miRNA) deregulation seem to exert a central role in breast cancer initiation and progression. Therefore, targeting epigenetics deregulation may be an effective strategy for preventing and halting carcinogenesis. Studies have revealed the significant role of naturally occurring polyphenolic compounds derived from fermented blueberry fruits in cancer chemoprevention by modulation of cancer stem cell development through the epigenetic mechanism and regulation of cellular signaling pathways. In this study, we first investigated the phytochemical changes during the blueberry fermentation process. Fermentation favored the release of oligomers and bioactive compounds such as protocatechuic acid (PCA), gallic acid, and catechol. Next, we investigated the chemopreventive potentials of a polyphenolic mixture containing PCA, gallic acid, and catechin found in fermented blueberry juice in a breast cancer model by measuring miRNA expression and the signaling pathways involved in breast cancer stemness and invasion. To this end, 4T1 and MDA-MB-231 cell lines were treated with different doses of the polyphenolic mixture for 24 h. Additionally, female Balb/c mice were fed with this mixture for five weeks; two weeks before and three weeks after receiving 4T1 cells. Mammosphere formation was assayed in both cell lines and the single-cell suspension obtained from the tumor. Lung metastases were counted by isolating 6-thioguanine-resistant cells present in the lungs. In addition, we conducted RT-qPCR and Western blot analysis to validate the expression of targeted miRNAs and proteins, respectively. We found a significant reduction in mammosphere formation in both cell lines treated with the mixture and in tumoral primary cells isolated from mice treated with the polyphenolic compound. The number of colony-forming units of 4T1 cells in the lungs was significantly lower in the treatment group compared to the control group. miR-145 expression significantly increased in the tumor samples of mice treated with the polyphenolic mixture compared to the control group. Furthermore, a significant increase in FOXO1 levels was noted in both cell lines treated with the mixture. Overall, our results show that phenolic compounds found in fermented blueberry delay the formation of tumor-initiating cells in vitro and in vivo and reduce the spread of metastatic cells. The protective mechanisms seem to be related, at least partly, to the epigenetic modulation of mir-145 and its signaling pathways.


Assuntos
Mirtilos Azuis (Planta) , Neoplasias da Mama , MicroRNAs , Polifenóis , Animais , Feminino , Camundongos , Mirtilos Azuis (Planta)/química , Linhagem Celular Tumoral , Proliferação de Células , Quimioprevenção , Fermentação , Ácido Gálico/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Polifenóis/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...